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Chapters 3 & 4
Advanced Measurements in 

Semiconductor Lasers

Ultra-Short Pulse Generation
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Introduction

q The fast growing use of semiconductor lasers in various fields including fiber 
telecommunication systems, optical data storage, remote sensing places very 
stringent requirements on device performance

q A detailed understanding of physical processes governing the behavior 
of laser diodes is required 

q Electrical and optical techniques give complimentary information on the 
operation of the laser diodes

q Physical processes below threshold are critical in determining the 
operating point of the laser (device performance)

q Leakage current or wavelength chirp can be deduced from above 
threshold measurements

q These measurements provide critical experimental feedback in the 
process of laser diode optimization. 
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Laser Structure
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Laser Testing
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Optical Spectrum Analyser

Laser Testing

q Static measurements
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I-V Characteristics

q I(V) allows to estimate the quality of the junction
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First-Step Exp. 

q LCC gives Ith, external efficiency

q Ith versus T gives the 
temperature characteristics T0

q Jth versus 1/L gives the 
transparency current density
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q Optical gain influences the operating 
conditions not only the basic output 
characteristics, such as the threshold 
current, but also the temperature 
dependence as well as high-speed 
performance of the laser

q Figure to the right shows spectra of 
amplified spontaneous emission 
(ASE) for an 1.3μm buried 
heterostructure semiconductor laser 

q B. Hakki and T. Paoli proposed to 
determine the modal optical gain from 
the contrast of the ASE spectra where 
r(λ) is the peak-to-valley ratio

ASE Spectrum 
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TSE Spectrum

q True Spontaneous Emission (TSE) spectra is recorded from the side of 
an uncoated laser at different currents 

q TSE spectrum is broader with no FP ripples and extends much further into 
high energies than the ASE because the TSE is not affected by re-
absorption in the active layer

q TSE spectrum is not affected by the value or the spectral dependence of the 
mirror loss or grating Þ true information about the optical gain in case ASE 
technique is not suitable
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qResults on GaAs:
§ Expertise on recombination mechanisms with both theory & 

experimental set-ups
§ Importance of non-radiative recombination processes
§ Predominance of Auger effect in long wavelength laser
Marko et al. IEEE J. Sel. Top. Quantum Elec. 9 1300 (2003)

Radiative current linearly linked 
to integrated spontaneous 
radiative emission

qExperimental set-up

TSE / QD Lasers
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q Total current: j = jstim + jrad + jnon_rad

q At threshold: jstim = 0 ð jth = jrad + jnon_rad

ð Great importance of non radiative recombination

TSE/QD Lasers
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(Marko et al. IEEE J. Sel. Top. 
Quantum Elec. 9 1300 (2003))

Pressure Evaluation
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q Nature of these non-radiative recombination ?

Pressure /QD Lasers

jth ø : signature of the predominance of Auger effect

jnon_rad = jleak + jauger

When P ö : jrad ö jleak ö while  jauger ø
(Marko et al. IEEE J. Sel. Top. Quantum Elec. 9 1300 (2003))

q Measurement of jth as a function of the pressure
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Optical Loss

q Optical loss are related to the 
free-carrier absorption (intraband 
process) and scattering loss on 
the waveguide nonuniformities

q Using a set of lasers, varying in 
length allow to estimate the average 
value of loss as well as the internal 
quantum efficiency

Damping

q Intersection of the gain curves 
in TE and TM polarizations
(optical gain does not depend on 
the polarization when the material 
gain is zero)
q Modal optical gain equals total 
loss if the material optical gain is 
zero (at the transition point 
between absorption and gain)
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Carrier Leakage

q Collection of the light resulting from recombination of carriers outside 
the active region

q Significant electron leakage can occur in double heterostructures 
constituting one of the mechanisms of sub-linearity of the LCC and also of 
the temperature dependence of the threshold current in laser diodes

q Laser structures with low carrier overflow into barriers and SCH
(separate confinement area) layer exhibit better high-temperature 
performance
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RIN

q Relative intensity noise (RIN) is associated with the fluctuation of the 
concentrations in photon and electron systems caused by spontaneous 
emission light events

q Deviation of the electron and photon densities from equilibrium values lead 
to their damped oscillations with the frequency of electron-photon 
resonance and damping factor 

q Figure to the left shows the RIN 
spectra for a 1.3 μm InGaAsP/InP 
MQW laser at the different bias 
condition
q Resonance frequency, damping 
factor and linewidth can be 
determined from curve-fitting 
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Modulation Response

q Laser’s optical modulation response at different DC biases, measured using 
a network analyzer with a high-speed pin detector

q Additional drooping of the response curves has been attributed to carrier 
transport through the SCH layers and the carrier capture and thermoionic 
emission processes in QW lasers
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Carrier Lifetime

q Laser impedance below threshold is frequency-dependent 
Þ the differential carrier lifetime can be extracted

q The simplest equivalent circuit of a 
semiconductor laser below threshold can be 
derived from the rate equation (Small-Signals)

q Active layer represented as a RC circuit with 
characteristic time equal to the differential 
carrier lifetime

td=RdC
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q This technique is for determining 
the differential carrier lifetime via a 
small-signal current step excitation

q This technique has the
disadvantage of high noise if the 
excitation signal is small

q The measured optical response 
curve is shown to the right (circles) 
and was corrected (squares) and then 
fit to a single pole roll-off form from 
which the differential carrier 
lifetime can be extracted

Carrier Lifetime
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LEF/ASE

q By recording the ASE at different currents below threshold and 
measuring the change of the gain and the wavelength shift of FP peaks
with current Þ LEF and its dependence on the wavelength and current 
can be determined
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LEF/TSE

q An alternative measurement technique for LEF determination utilizes the 
optical gain spectra determined from TSE

q The gain spectra should be obtained in a very broad energy range

q Hakki-Paoli technique for extraction of the gain spectra from amplified 
spontaneous emission (ASE) from the laser facet does not allow for that

q The ASE measurements are usually easier to perform and more accurate, 
but sometimes the TSE type of the measurements are the only available 
solution

q Both methods described are based on the below threshold
Þ measurements can give only asymptotic value of the parameters close 
to threshold
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Carrier Heating

q High injection: significant difference between the lattice temperature 
and the temperature of the electron-hole-plasma in the active region

q Sources of carrier heating above threshold are injection of energetic 
carriers from heterobarriers into active layer and free-carrier absorption

qThe first effect depends on the injection current and the second on the 
optical field

q Since the modal optical gain, wavelength chirp and carrier leakage over 
the heterobarrier are sensitive to the carrier temperature, the study of 
carrier heating is important for improving device design

q An interesting experimental technique allows to measure the rate of 
change of the carrier plasma temperature with pumping current above 
threshold



Advanced Semiconductor Lasers, F. Grillot, 5MNT, 2010-2011 24

q Rate of carrier heating:

q Coefficient β = dν /dI is the chirp parameter 

q Equation above establishes the relation between the rate of carrier 
heating above threshold and wavelength chirp

q Coefficients dg/dTeh, αHT and αHμ can be determined from the gain 
measurements
Þ dg/dTeh=-0.45=/-0.05 cm− 1K−1, αHT=2.1+/-0.2 and αHμ=-1.4+/-0.3 and β 

=156 MHz/mA

q Using these values, the rate of change of the carrier temperature with 
current was estimated to be approximately 0.13K/mA
Þ The accuracy of the estimation is about 25%

Carrier Heating
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Why Mode-Locking?

q Digital Communications

q Extremely Short Duration Pulses
• Picosecond (10-12 s) 
• Femtosecond (10-15 s)

q Optical Transmission Speeds
• Speed of light ~ 3x108 m/s Mode-Locked Laser
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Mode Locking

q TR is the cavity round trip time
1/ TR is the repetition rate

d is the cavity length
n is the group refractive index 

Cavity configuration in a passively mode-locked laser
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q Active mode-locking
Þ using an external signal to induce 

a modulation of the intra-cavity 
light; 

Þ the laser cavity contains an 
active element, such as an optical 
modulator 

q Passive mode-locking
Þ use a nonlinear passive element, 

such as a saturable absorber that 
leads to the formation of an 
ultrashort pulse circulating in the 
laser cavity and causes self-
modulation of light Pulse generation with a fast absorber in a 

passively mode-locked laser 

Mode Locking
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CPML vs SCPML

q This method is based on the 
interaction of two counter 
propagating optical pulses inside 
the absorber of a laser

q If the two pulses do collide in the 
absorber, they will effect a much 
higher degree of saturation of its 
loss than if the pulses were to 
arrive in sequence

q Self-colliding pulse mode-locking
Þ The location of absorber is next to a 

high reflection (HR)-coated mirror 
where the optical pulse collides 
with itself in the saturable 
absorber for pulse narrowing

The configuration of a monolithic SCPM laser 
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QD for mode-locking

q Why Quantum dots are ideal  source 
for mode-locking?

• ultrabroad bandwidth 
• ultrafast gain dynamics 
• easily saturated absorption 
• strong inversion 
• wide gain bandwidth

q Figure of merit for 
mode locking:
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LCC

LCC curve with a 
reverse voltage of 0V on 
the 0.8-mm absorber

LCC curve with a reverse 
voltage of 1V on the 0.8-
mm absorber

q Mode-locked lasers exhibit bi-stability in LCCs

Absorber section

0.8-mm

Gain section 
3.3-mm
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q ESA diagram:
a. 0V 200mA, full span                             b. 0V, 200mA, span: 100MHz

Electrical Spectrum
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q ESA diagram:
a -1V 200mA, full span                         b -1V, 200mA, span: 100MHz

Electrical Spectrum
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String Harmonics

q Creation of Node
• Location of Node

q Artificial Harmonics
• Simultaneous Placement of 

Nodes 

Location of Nodes on a Violin
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Segmented  Device

HR

AR

q Device
• 6.75-mm 
• 3-μm Ridge
• 27 Sections

• 250-μm 
• HR~95%
• AR~5%

Example of 27 Section Device

Image of the wirebonded device
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Absorber Location

q Absorber Placement
• L is Device Length

q Harmonic Stimulated
• nth Harmonic
• N is the number of Equal 

Length Segments
• m is the section number

HR

AR

1

27
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Fundamental

q Sections 25-27
• VR= 3.15V

q Uniform Pumping
n 150 mA
n (555.56 A/cm2)

q Pulse Width = 4.96 ps
q fRep = 6.019 GHz

25

AR

HR

27
26
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2nd Harmonic

q Section14
• VR= 4.49V

q Uniform Pumping
• 150 mA
• (555.56 A/cm2)

q Pulse Width = 7.28 ps
q fRep = 12.027 GHz

14

AR

HR



Advanced Semiconductor Lasers, F. Grillot, 5MNT, 2010-2011 38

3rd Harmonic

q Sections 18 & 19
n VR= 3.38V

q Uniform Pumping
• 150 mA
• (555.56 A/cm2)

q Pulse Width = 4.34 ps
q fRep = 18.023 GHz

18

AR

HR

19
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6th Harmonic

q Section 14
• VR= 2.14 V 

q Sections 9 & 10
• VR= 0.00V

q Uniform Pumping
• 300 mA
• (1111.11 A/cm2)

q Pulse Width = 6.82 ps
q fRep = 36.120 GHz

10

AR

HR

14

9


